
Polaron states of electrons in the anisotropic surface over liquid helium

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2000 J. Phys.: Condens. Matter 12 7341

(http://iopscience.iop.org/0953-8984/12/33/303)

Download details:

IP Address: 171.66.16.221

The article was downloaded on 16/05/2010 at 06:39

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0953-8984/12/33
http://iopscience.iop.org/0953-8984
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys.: Condens. Matter 12 (2000) 7341–7357. Printed in the UK PII: S0953-8984(00)14411-X

Polaron states of electrons in the anisotropic surface over
liquid helium
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Abstract. The energetics and transport properties of the polaron in the anisotropic surface
over liquid helium are investigated. The localization radii and the energy of the ground and
excited states are calculated using the variational method within the hydrodynamic model of the
polaron. In particular, we have considered maximal anisotropy which corresponds to the system
of electrons in quasi-one-dimensional channels over liquid helium. The polaron binding energy is
found and the temperature for the polaron formation is estimated to be below 0.1 K. Solving the
hydrodynamic equations for fluid velocities, the polaron mobilities along and across the channel are
determined. The possibility of experimental observation of polarons by measuring the frequency of
spectroscopic transitions as well the mobility as functions of the holding electric field is addressed.

1. Introduction

An electron together with its self-induced polarization in a medium forms a quasiparticle which
has been named a polaron. Besides its importance as a standard theoretical model of a fermionic
particle coupled to a boson scalar field, the polaron has been observed in some physical systems.
In particular, there has been great interest in the search for polaron states for surface electrons
levitated over liquid helium whose properties render the system a good candidate for producing
a polaron of reduced dimensionality. It is well known that electrons over helium form a plasma
in which the Coulomb coupling can be varied over a wide range, from the gas regime at low
densities to the triangular Wigner crystal in the opposite regime. In the gas regime and at low
temperatures, electrons are scattered by surface oscillations (ripplons in their quantized form)
and the electron–ripplon coupling can be considered perturbatively. The polaron state is found
in the regime in which the surface electron state is still at low density, but its strong coupling
to the deformation surface cannot be treated as a perturbation. This makes the nature of the
polaron state much more complicated. It is not surprising that, although predicted theoretically
a long time ago [1,2], the surface polaron over liquid helium has remained the focus of a great
amount of experimental work during the last two decades [3–5].

Theoretical approaches to the investigation of the surface polaron over helium are of
two types. One is based on the description of the dimple state (the electron plus the
deformation of the isotropic helium surface due to the pressing field) through the minimization
of the total-energy functional of the dimple which leads to a system of coupled equations of
motion [1, 2, 6, 7]; the transport properties are evaluated in terms of classical hydrodynamical
equations since the polaron has a high effective mass [1,2]. The other involves the concept of
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a Fröhlich-like polaron (a single electron coupled to ripplons) [8]. The conductivity has been
calculated in terms of a force–force correlation function within the linear response theory [9].
Despite the great difference of the methods, the final results for the structure of the ripplonic
polaron derived by the two approaches show fair qualitative and quantitative agreement [10].

In a seminal paper, Shikin and Monarkha [1] determined the ground state of the electron
in an isotropic surface deformation through the solution of the Schrödinger equation for the
electron trapped in the dimple and the mechanical equilibrium equation using a Fourier–
Bessel transform, in view of the circular symmetry of the equations. The profile of the surface
deformation was taken in the harmonic approximation (HA) which allows one to obtain the
localization length of the electron from the Gaussian wave function, i.e. the polaron radius.
Later Monarkha [2] using a variational method (VM) was able to obtain the localization length
from the minimization of the polaron energy calculated with a trial Gaussian wave function.
In these works, the influence of external fields and the thickness of the helium film on the static
and dynamical properties of the polaron was investigated. Marques and Studart [11] have
solved the Schrödinger equation and the mechanical equilibrium equation in a self-consistent
way, obtaining both the electron wave function and the profile of the dimple. The comparison
of the numerical results with those from the HA and the VM shows that the VM provides
a more exact description of the electron wave function than the HA. More recently Farias
and Peeters [12] have also used the VM for determining both ground and excited polaron
states, taking into account the effect of a positive impurity charge localized in the substrate
that supports the helium film.

Recently, there has been a growing interest in the effects of a corrugated helium surface
on the properties of surface electrons. One motivation is the desire to make use of suspended
helium films [13] to increase electron densities, which are limited in the case of bulk helium
by a surface instability and by the impossibility of obtaining high-mobility electrons on a thin
film, in which high densities could be achieved, due to surface roughness of the substrate.
The other is the desire to confine surface electrons in one and zero dimensions—as has been
realized in semiconductor heterostructures.

Quasi-one-dimensional (Q1D) electron systems on the surface of liquid helium have been
realized by either geometric or electrostatic mechanisms which provide the distortion of the
helium surface, and a confining electric field holds the surface electrons along the liquid
channels formed. Multi-wire systems have been created using dielectric optical gratings [14],
substrate wrapping by nylon threads [15], and metallic gate structures [16]. A single wire was
also produced using a sharply bent polymer film [17] and metallic strips on a printed circuit
board [18]. In such a Q1D system, the electron motion is restricted by, in addition to the
quantum well due to the holding electric field in the direction normal to the liquid surface, a
lateral confinement, and can be modelled in the first order of approximation by a harmonic
potential. Under such conditions, the formation of an asymmetric polaron may also become
possible.

In this paper, we address the question of polaron properties by using the hydrodynamic
approach in the case of an anisotropic potential U(x, y) due to surface corrugation and in
particular for the Q1D electron system described by a parabolic confinement in the y-direction.
The general formalism can be applied for both circularly symmetric and asymmetric polaron
states. We consider the properties of both ground and excited polaron states and the anisotropic
transport properties of the polaron are investigated for surface electrons on 4He and 3He [19].

The paper is organized as follows. The general formalism and the main relations are
described in section 2. In section 3 we analyse the properties of the ground and excited
polaron states. In section 4 we investigate the polaron mobility when a driving electric field is
applied parallel to the liquid surface. In section 5 we summarize our main results.
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2. Theoretical formalism

Electrons above the free surface (z = 0) of a helium film with thickness d are prevented
from penetrating into the liquid because of a high potential barrier (∼1 eV) at the liquid–
vapour interface. If an electric field E⊥ is applied in the z-direction, the electrons are
trapped in a quantum well due to image forces coming from the liquid helium and the
substrate and determined by the potential V (z) = eE⊥z − �0/z − �1/(z + d) where
�0 = e2(εHe − 1)/4(εHe + 1), �1 = e2εHe(εs − εHe)/(1 + εHe)

2(εHe + εs) with εHe and
εs the dielectric constants of helium and the substrate respectively. If the barrier height is
approximated as infinity, the condition �(x, y, z = 0) = 0 for the electron wave function
must be fulfilled for a flat surface. The situation changes drastically if we take into account
the surface deformation ξ(x, y). Now the boundary condition for �(x, y, z) has to be
imposed at z = ξ(x, y). Shikin and Monarkha [20] show that the transformation to a new
variable z′ = z − ξ(x, y) allows one to avoid the perturbation in the boundary condition for
�(x, y, z), leading, however, to modifications in the Schrödinger equation. For ξ(0, 0) � d

and 〈z〉 � d , where 〈z〉 is the mean electron distance from the surface, these modifications
result, in particular, in the dependence of V (z) on an effective holding electric field given by
E∗

⊥ = E⊥ +�/ed2 with � = e2(εs − 1)/4(εs + 1) where we take εHe 
 1, and the appearance
of an additional term eE∗

⊥ξ(x, y).
The electron motion along the plane (x, y) in the presence of a magnetic field B in the

z-direction is described by the Schrödinger equation

1

2m

[(
p̂x +

eB

2c
y

)2

+

(
p̂y − eB

2c
x

)2]
ψ(x, y) + [eE∗

⊥ξ(x, y) + U(x, y)]ψ(x, y)

= εψ(x, y). (1)

Here p̂x and p̂y are the x- and y-components of the momentum operator and we have chosen
the symmetric gauge of the vector potential �A = (−By/2, Bx/2, 0). Note that due to the
explicit (x, y) dependence of the potential term in equation (1), p̂x and p̂y are not conserved.
The confinement potential U(x, y) will be considered as a general anisotropic parabolic well
given by

U(x, y) = mω2
0

2
(αx2 + y2) (2)

where α is the anisotropic parameter. For α = 1, we restore the circular symmetry and α = 0
corresponds to the case of a Q1D electron considered in references [21,22]. Then equation (1)
can be rewritten as

− h̄2

2m
∇2ψ − h̄ωc

2
L̂zψ +

[
m

8
(ω2

xx
2 + ω2

yy
2) + eE∗

⊥ξ
]
ψ = εψ (3)

where ∇ is the 2D gradient, ω2
x = ω2

c + 4αω2
0 and ω2

y = ω2
c + 4ω2

0 with ωc = eB/mc the cyclo-

tron frequency, and L̂z is the angular momentum operator along z which is also not conserved
for α �= 1 when the axial symmetry is lost. As a consequence, the second term in equation (3)
does not contribute to energy eigenvalues ε if ψ(x, y) is taken real. If we assume that ψ is
real and vanishes at infinity, the electron energy can be calculated from

ε =
∫ ∫ [

h̄2

2m
(∇ψ)2 +

m

8
(ω2

xx
2 + ω2

yy
2)ψ2 + eE∗

⊥ξ(x, y)ψ
2

]
dx dy. (4)

The total energy of the complex ‘electron + dimple’ can be defined as

W = ε +
σ

2

∫ ∫ [
(∇ξ)2 + k2

c ξ
2
]

dx dy (5)
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where k2
c = ρg′/σ is the capillary constant, g′ = g(1 + 3f/ρgd4), f is the van der Waals

coupling constant for the coupling of the helium to the substrate, σ and ρ are the surface tension
coefficient and the mass density of helium, respectively, and g is the gravitational acceleration.
As is seen from equation (5), the inequalityW > ε is always satisfied. Minimizing equation (5),
we obtain the mechanical equilibrium equation

σ(∇2ξ − k2
c ξ) = eE∗

⊥ψ
2. (6)

Note that the quantity eE∗
⊥ψ

2 plays the role of an electron pressure on the liquid surface.
As is seen from equations (3)–(5), the asymmetry of the electron motion in the x- and

y-directions for ωx �= ωy makes it inappropriate to use the Fourier–Bessel transform in polar
coordinates as in previous works. Here we use the 2D Fourier transform for ξ(x, y) as follows:

ξ(x, y) =
∑

k

ξkei(kxx+kyy) ξk = 1

S

∫
ξ(x, y)e−i(kxx+kyy) dx dy (7)

and a similar transform for ψ . Here k is the 2D wave vector and S is the surface area.
Using equation (7) one can easily obtain the following expression which connects the Fourier
transforms of ξ(x, y) and ψ2(x, y):

ξk = − eE∗
⊥

σ(k2 + k2
c )

[
ψ2(x, y)

]
k
. (8)

Equations (7) and (8) can be used to eliminate ξ(x, y) from equations (4) and (5) and obtain
the total energy of the polaron in terms only of the electron wave function and its Fourier
transform as

W =
∫ ∫ [

h̄2

2m
(∇ψ)2 +

m

8
(ω2

xx
2 + ω2

yy
2)ψ2

]
dx dy

− (eE∗
⊥)

2

2σ

∑
k

[
ψ2(x, y)

]
k

[
ψ2(x, y)

]
−k

k2 + k2
c

. (9)

The electron energy ε has the same expression as W except for the absence of the factor 2
in the last term of equation (9). For the sake of completeness, we can rewrite the resulting
Schrödinger equation after removing ξ(x, y) from equation (3), as

− h̄2

2m
∇2ψ − h̄ωc

2
L̂zψ +

m

8
(ω2

xx
2 + ω2

yy
2)ψ

− (eE∗
⊥)

2

σ

(∑
k

[ψ2(x, y)]k
k2 + k2

c

ei(kxx+kyy)

)
ψ = εψ. (10)

Equation (10) is quite general and can be solved self-consistently, and the results are
used to evaluate the total polaron energy W and surface profile ξ(x, y). Furthermore, any
additional potential energy can be included in equation (10) in a straightforward way. In
particular, the effects of an impurity charge [12] can also be studied using a modified version
of equation (10) if the conditions ξ(0, 0), 〈z〉 � d are still valid. Unfortunately, equation
(10) can only be solved by numerical methods and the procedure is cumbersome even in the
symmetric case of α = 1 [11]. We prefer to make reasonable guesses about the structure
of ψ(x, y) and obtain analytical results for the energetics and transport properties of the
asymmetric polaron.

We also hereafter limit our consideration to the most studied case of the Q1D system model
[21,22], where the surface electrons are confined by a lateral potential well corresponding to the
completely anisotropic limit, α = 0, i.e. U(y) = mω2

0y
2/2 with the characteristic frequency

defined as ω0 = √
eE∗

⊥/mR, where R (∼10−4–10−3 cm) is the radius of curvature of the
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liquid in the channel. In the absence of a magnetic field, the spectrum for the free-electron
motion is given by E(kx, n) = �

2k2
x/2m + �ω0(n + 1/2) and the electron localization in the

y-direction estimated by the parameter L0 = (�/mω0)
1/2 � R, and, for this reason, curvature

effects play no significant role because E∗
⊥ pushes the electron to the bottom of the channel.

This parameter is somewhat changed by the presence of a magnetic field [23]. Typical values
of L0 are of the order of 10−6 cm [21, 22] and the condition L0 � R is satisfied with great
accuracy. Obviously, for the polaron state the localization parameter along the y-direction will
be significantly modified.

3. Polaron energetics

3.1. The ground state

On the basis of the general structure of equation (10), we choose the trial function for describing
the ground state of the polaron as

ψ0(x, y) = 1

π1/2()x)y)1/2
exp

[
−1

2

(
x2

)2
x

+
y2

)2
y

)]
(11)

where )x and )y are the electron localization lengths in the x- and y-directions, respectively.
Substituting equation (11) into equations (6)–(9), one obtains the surface deformation ξ0(x, y)

and the total energy W0 of the polaron ground state as

ξ0(x, y) = − eE∗
⊥

4π2σ

∫
dkx

∫
dky

exp[−(k2
x)

2
x + k2

y)
2
y)/4] cos(kxx) cos(kyy)

k2
x + k2

y + k2
c

(12)

and

W0 = − (eE∗
⊥)

2

8π2σ

∫
dkx

∫
dky

exp[−(k2
x)

2
x + k2

y)
2
y)/2]

k2
x + k2

y + k2
c

+
h̄2

4m

(
1

)2
x

+
1

)2
y

)
+

m

16

[
ω2

c)
2
x + (ω2

c + 4ω2
0))

2
y

]
. (13)

The ground-state energy ε(0) of the electron has the same form except for the coefficient of
the integral which in this case is (eE∗

⊥)
2/4π2σ . In the limit k2

c ()
2
x + )2

y) � 1, the integral in
equation (13) can be evaluated analytically, resulting in

W0 
 − (eE∗
⊥)

2

4πσ
ln

[
2
√

2√
γ kc()x + )y)

]
+

h̄2

4m

(
1

)2
x

+
1

)2
y

)
+

m

16

[
ω2

c)
2
x + (ω2

c + 4ω2
0))

2
y

]
(14)

where γ = expC, and C = 0.5772 . . . is the Euler–Mascheroni constant. The value of ε(0) is
nearly the same, but with the coefficient 2 instead of 4 in the denominator of the first term of
equation (14).

The localization lengths )x and )y , which appear in equations (11)–(14), have been
evaluated by a few methods. In particular, a HA similar to that used in reference [1] can be
applied which is based on the following approximate expression for the surface deformation:

ξ0(x, y) 
 ξ(0, 0)+
1

2

[
ξ ′′
xx(0, 0)x2 + ξ ′′

yy(0, 0)y2
]
. (15)

This expansion is similar to that of the potential energy near its minimum value in the 2D
oscillatory problem and reduces the problem of the electron motion in the dimple to that of the
motion in a parabolic confinement potential, by defining )x and )y as localization parameters
for the 2D harmonic oscillator. We prefer however to use the VM, which allows us to obtain
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)x and )y from the minimization conditions for the energy W0, i.e. ∂W0/∂)x = ∂W0/∂)y = 0.
Note that in the VM the key point for consideration is the expression for the polaron energy,
given by equation (14), whereas the structure of the dimple potential is less important and
is taken into account through equation (6). From the experimental point of view, using the
VM seems more convenient because the characteristic value of the helium surface depression
in the centre of the dimple is about 10−8 cm for E∗

⊥ ∼ 3 kV cm−1 which is impossible to
detect directly. Hereafter, this estimate is based on actual holding fields in experiments on
electrons along Q1D channels on bulk helium, where the effects of the film thickness are
neglected [14, 17]. On the other hand, as we will see, the energy gap between the ground and
excited polaron states, calculated using the VM, may in principle be accessible experimentally.

In the VM, )x and )y can be found from the roots of the system of
equations

1

)4
x

− 1

L2
F )x()x + )y)

− 1

L4
B

= 0 and
1

)4
y

− 1

L2
F )y()x + )y)

− 1

L4
0

− 1

L4
B

= 0

(16)

where L2
F = 2πσ�

2/m(eE∗
⊥)

2 and L2
B = 2�/mωc. Equations (16) have been solved

numerically. The results are presented in figure 1 as functions of the holding field for
some values of the magnetic field and for 4He as the liquid substrate. Analytical solution
of equations (16) is possible in some limiting cases. For B = 0 and very high holding
fields E∗

⊥ � 4 kV cm−1 satisfying the condition LF � L0, one obtains )x 
 )y 
 √
2LF

which is the localization parameter for the symmetric polaron where the effects of the lateral
confinement along y are negligible. For holding fields in the range 1 < E∗

⊥ < 3 kV cm−1,
in the opposite limit LF � L0, one has )x 
 LF and )y 
 L0 which correspond to the
numerical results shown in figure 1. Hence the localization length )y is almost the same as
that for the electron moving freely along the Q1D channel. The numerical estimates at B = 0
are )x ∼ 10−5 cm and )y ∼ 10−6 cm for 1 < E∗

⊥ < 3 kV cm−1. These values are significantly
smaller than the radius of curvatureR. This means that not only is the condition )y � R, which
supports the validity of our Q1D confinement model, fulfilled, but also the condition )x � R

is satisfied. The application of the magnetic field leads to a decrease of the localization lengths
in comparison with those for B = 0. For high B (ωc � ω0), one obtains from equations (16)
)x 
 )y 
 √

2LF for LF � LB and )x 
 )y 
 LB for LF � LB . We point out that
)x and )y , calculated using the HA, give different asymptotic values: )x 
 )y 
 LF for
LF � L0, LB , while for B = 0, the results are )x 
 LF/

√
2 and )y 
 L0 at LF � L0.

For high magnetic fields and LF � LB , one has )x 
 )y 
 LB . It is interesting also to
note that if the VM is used for the energy of the electron trapped in the dimple (ε(0) instead of
W0), the results are the same as those obtained in the HA. One can conclude that the solutions
of equations (16) yielding )x = )y , which is the case for a symmetric polaron, appear either
in the limit of very high holding field (small LF ) or for high magnetic fields (ωc � ω0,
LF � LB).

Using the localization lengths from equation (16), we depicted in figure 2 the polaron
energy as a function of the holding field for some values of the magnetic field. For )x 
 LF

and )y 
 L0 and also B = 0, equation (14) is rewritten as

W0 
 − (eE∗
⊥)

2

4πσ
ln

2
√

2√
γ kcLF

+
h̄2

4mL2
F

+
h̄ω0

2
. (17)



Polaron states of electrons 7347

1.0 1.5 2.0 2.5 3.0
0.0

0.2

0.4

0.6

0.8

1.0

1.2 (a)

4He

Lo
ca

liz
at

io
n 

pa
ra

m
et

er
 (x

-d
ir

ec
tio

n)

Electric field (kV/cm)

   B = 0
   0.5 T
   1.0 T
   5.0 T

1.0 1.5 2.0 2.5 3.0

0.05

0.10

0.15

0.20

0.25

0.30

4He

(b)

Lo
ca

liz
at

io
n 

pa
ra

m
et

er
 (y

-d
ir

ec
tio

n)

Electric field (kV/cm)

   B = 0
   0.5 T
   1.0 T
   5.0 T

Figure 1. Localization parameters )x (a) and )y (b) in units of LF = (2πh̄2σ/m)1/2/(eE∗
⊥) for

the polaron ground state on the surface of 4He as a function of the holding electric field E∗
⊥ for

some values of the magnetic field.

Defining the binding energy Eb as the energy of the polaron state minus the electron energy
h̄ω0/2 of the free motion in the lowest subband of the lateral potential, one obtains

Eb 
 − (eE∗
⊥)

2

4πσ
ln

2
√

2√
γ kcLF

+
h̄2

4mL2
F

. (18)

Note that we have considered very low temperatures T � h̄ω0 where only the lowest subband
n = 0 is occupied (for the classical surface electron system, kx ∼ √

mT /h̄). The polaron
state is preferable energetically at T < |Eb|; otherwise thermal motion can liberate electrons
from the dimple. We estimate Eb 
 −0.03 K and Eb 
 −0.3 K for holding electric
fields of 1 V cm−1 and 3 kV cm−1, respectively, in the case of a 4He substrate. One can
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conclude that the energetic conditions for the formation of the polaron in the Q1D electron
system on the liquid helium surface are almost the same as in the case of the 2D symmetric
polaron.
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Figure 2. The total energy of the polaron ground state as a function of the holding electric field on
the surface of 4He.

For magnetic fields satisfying the conditions ωc � ω0, LF � LB , the binding energy,
defined by extracting the cyclotron energy h̄ωc/2 of the lowest Landau level from W0 in
equation (14), can be written as

Eb 
 − (eE∗
⊥)

2

4πσ
ln

√
2√

γ kcLB

(19a)

which agrees with the asymptotic value of Eb for the symmetric polaron (ω0 = 0) for very high
B. For B = 5.5 T (ωc = 1012 s−1), we estimate LB = 1.52 × 10−6 cm and Eb 
 −0.36 K
for E∗

⊥ = 3 kV cm−1, which is very close to that for B = 0.
We have also estimated the profile of the surface from equation (12). For large distances

such that kcx and kcy � 1, ξ(x, y) decreases exponentially as a function of the distance
r = √

(x2 + y2) in the same manner as for the symmetric polaron [11]. The value of the
dimple depth at its centre can be written as

ξ0(0, 0) 
 − eE∗
⊥

2πσ
ln

4√
γ kc()x + )y)

. (20)

For B = 0 and )x 
 LF , )y 
 L0, we obtain

ξ0(0, 0) 
 −(eE∗
⊥/2πσ) ln(4/

√
γ kcLF ) 
 −1.9 × 10−8 cm

for E∗
⊥ = 3 kV cm−1 if the liquid substrate is 4He. For high B, where LF � LB and ωc � ω0,

one has

ξ0(0, 0) 
 −(eE∗
⊥/2πσ) ln(2/

√
γ kcLB) 
 −2.2 × 10−8 cm.

It is interesting to recover from our results those for the symmetric polaron where ω0 = 0.
In this case, the x- and y-directions are equivalent and the z-component of the angular
momentum is conserved. In view of this, one can replace the operator L̂z of the angular
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momentum in equations (3) and (10) by its eigenvalue lz, which leads to the new contribution
h̄ωclz/2 to the electron energy ε in the case of non-zero magnetic field. We should put
lz = 0 for the ground state of the polaron with the lowest angular momentum. Moreover,
this contribution is zero for real electron wave functions in the polaron state even for non-zero
angular momentum. If ω0 = 0, the solution of equations (16) is ) = )x = )y with

1/)2 = 1/4L2
F +

√
1/16L4

F + 1/L2
B

and the electron wave function for the ground state is written as

ψ0(x, y) = 1

π1/2)
e−r2/2)2

which leads to the same results for W0, ξ0(r) as previously found in the case of a symmetric
polaron [1, 2, 11]. In particular, the polaron energy is

W0 
 − (eE∗
⊥)

2

4πσ

[
ln

1√
γ kcLF

− 1

]
.

One can easily also obtain that the second-order derivative of ξ(r) at the centre of the dimple
is [ξ ′′

rr (0, 0)]0 = eE∗
⊥ /2πσ)2 which shows the existence of the minimum at r = 0.

3.2. Excited states

We must choose a trial excited-state wave function orthogonal to the ground-state wave function
given by equation (11), which as we have seen is the same as the wave function for the 2D
asymmetric harmonic oscillator in Cartesian coordinates. Hence it is natural to propose the
wave function of the excited states of the 2D harmonic oscillator as the trial function for the
excited polaron states:

ψ10(x, y) =
√

2x

π1/2(δ3
xδy)

1/2
exp

[
−1

2

(
x2

δ2
x

+
y2

δ2
y

)]
. (21)

Evidently, another excited state |0, 1〉 can be considered with the wave function ψ01(x, y). The
wave function ψ01 has the same form as ψ10 as is seen by replacing x by y in equation (21).
We find however that the state |1, 0〉 has smaller energy than |0, 1〉. For this reason the state
|1, 0〉 should be considered the first excited polaron state and we are looking for results for this
state. The results for the state |0, 1〉 can be easily obtained in a straightforward way.

Following the same procedure as for the ground state, we arrive at the following expressions
for the polaron energy and the profile of the dimple in the excited state:

W10 = − (eE∗
⊥)

2

8π2σ

∫
dkx

∫
dky

(1 − k2
xδ

2
x/2)2 exp[−(k2

xδ
2
x + k2

yδ
2
y)/2]

k2
x + k2

y + k2
c

+
h̄2

4m

(
3

δ2
x

+
1

δ2
y

)
+

m

16

[
3ω2

c δ
2
x + (ω2

c + 4ω2
0)δ

2
y

]
(22)

and

ξ10(x, y) = − eE∗
⊥

4π2σ

∫
dkx

∫
dky

(1 − k2
xδ

2
x/2) exp[−(k2

xδ
2
x + k2

yδ
2
y)/4] cos(kxx) cos(kyy)

k2
x + k2

y + k2
c

.

(23)

As before, the electron energy ε(10) has the coefficient −(eE∗
⊥)

2/4π2σ in the first term in
equation (22).

The x-dependence of ψ10(x, y) contributes strongly to the decrease of the electronic
pressure on the liquid surface at x = 0, at the centre of the dimple. According to equation (6),
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the pressure is proportional to ψ2
10(x, y). As a consequence, in the limit k2

x(δ
2
x + δ2

y) � 1, the
second-order partial derivative [ξ ′′

xx]10(0, 0) calculated using equation (23) is

[ξ ′′
xx]10(0, 0) = −[ξ ′′

yy]10(0, 0) 
 −eE∗
⊥/[πσ(δx + δy)

2].

This result is a direct consequence of the structure of the trial wave function ψ10(x, y) and
means that the function ξ10(x, y) has a maximum at x = 0 for fixed y whereas it has a minimum
at y = 0 at fixed x, and one cannot reach a definite conclusion as to the nature of the dimple
potential as a function of the two variables x and y at x = y = 0. Under such conditions, the
use of the HA for excited states is inappropriate, because it is based on the expansion given by
equation (15) near the minimum of the dimple potential at x = y = 0. For this reason, using
the VM is the only consistent way to calculate the polaron properties for the excited state.

As before, the localization lengths δx and δy can be obtained, in the VM, from the conditions
for a minimum of the energy W10 given by equation (22). For k2

c (δ
2
x + δ2

y) � 1, we obtain

W10 
 − (eE∗
⊥)

2

4πσ

[
ln

2
√

2√
γ kc(δx + δy)

− δx(2δx + 3δy)

4(δx + δy)2

]
+

h̄2

4m

(
3

δ2
x

+
1

δ2
y

)
+

m

16

[
3ω2

c δ
2
x + (ω2

c + 4ω2
0)δ

2
y)

]
. (24)

Imposing that ∂W10/∂x = ∂W10/∂y = 0, we arrive at the system of equations

3

δ4
x

− 1

L2
F δx(δx + δy)

[
1 +

δy(δx + 3δy)

4(δx + δy)2

]
− 3

L4
B

= 0

1

δ4
y

− 1

L2
F δy(δx + δy)

[
1 − δx(δx + 3δy)

4(δx + δy)2

]
− 1

L4
0

− 1

L4
B

= 0.
(25)

In the limit of very high holding fields where LF � L0, LB , we found δx 
 2.12LF and
δy 
 1.73LF . The localization parameters obtained from the minimization of ε(10) are

√
2

times smaller. If B = 0, the analytical solution of equations (25) can be found in the limit
L0 � LF : δx 
 √

3LF and δy 
 L0. Finally, for high B (ωc � ω0) one obtains δx 

δy 
 LB .

We now discuss the energy gap ε(10) − ε(0) between the ground and excited states of the
electron trapped in the dimple. First, we point out that the transitions occur between electron
states in different dimple profiles given by equations (12) and (23). As a consequence, our
results for the excitation frequency ω10−0 = ε(10) − ε(0)/h̄ are valid when ω10−0 � ωr , where
ωr is the characteristic frequency of ripplons involved in the formation of the dimple. This
condition is satisfied for ripplons with h̄ωr 
 T for T � 0.1 K. Our numerical results for
ω10−0 are presented in figure 3 as functions of the holding field for zero magnetic field and two
substrates, 3He and 4He. In the range 1 < E∗

⊥ < 3 kV cm−1, the curves can be described by
the analytical expression

ω10−0 
 (eE∗
⊥)

2[1 + ln 3]/4πσh̄

which changes from 9.8 × 108 s−1 to 8 × 109 s−1 for the polaron over 4He which corresponds
to the electron energy increasing from 7.5 × 10−3 K to 6.2 × 10−2 K. This increase is
significantly smaller than |Eb| calculated from equation (18), and the electron transitions
from ground to excited states do not destroy the polaron state. It is interesting to note that
W10 − W0 
 [ε(10) − ε(0)]/2 is under such conditions significantly smaller than |Eb| and that
also ω10−0 � ω0, whose characteristic values vary from 5.9×1010 s−1 to 1.0×1011 s−1 when
E∗

⊥ increases from 1 to 3 kV cm−1. One should emphasize that the spectroscopic frequencies
ω01−0 for the transition from the ground to the excited state |0, 1〉 are significantly higher than
ω10−1 and are the same as ω0. This means that in such a spectroscopic transition the electron
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energy increases from 0.4 K to 0.7 K when E∗
⊥ lies in the range of 1–3 kV cm−1. These

energies are significantly higher than |Eb| and this transition should destroy the polaron state.
For this reason, only the state |1, 0〉 can be considered as an excited polaron state.
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Figure 3. The frequency of the spectroscopic transitions from ground to excited electronic states in
the asymmetric dimple as a function of the holding electric field, for 4He and 3He liquid surfaces.

We should emphasize that equation (24) allows us to estimate the transition frequency in
the case of the symmetric polaron (ω0 = 0). Taking the values of δx and δy in the limit of
LF � L0, one can easily obtain

ω1−0 
 0.65(eE∗
⊥)

2[1 + ln 3]/4πσ

which is 2/3 of ω10−0 for the asymmetric polaron. So spectroscopic measurements can
help experimentalists to give even more convincing evidence of polaron formation on helium
films [4, 5].

The surface deformation for this state is given by

ξ10(0, 0) 
 − eE∗
⊥

2πσ

[
ln

4√
γ kc(δx + δy)

− δx

δx + δy

]
(26)

which follows from equation (23) in the limit of

kc

√
δ2
x + δ2

y � 1.

The absolute values of ξ10(0, 0) are smaller than those of ξ00(0, 0)̇. For E∗
⊥ = 3 kV cm−1,

ξ10(0, 0) 
 −1.67 × 10−8 cm for B = 0.
The problem of recovering the symmetric case from the previous results in the case of

excited states is more complicated than for the ground state. If ω0 = 0, the excited state can
be described by the trial wave function [7, 12]

ψ1(r, ϕ) =
(

1√
π52

)
r exp(−r2/252)eilzϕ lz = ±1 (27)

which is the eigenfunction of the angular momentum L̂z corresponding to the excited state
of the 2D harmonic oscillator in polar coordinates and 5 is the single localization parameter.
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However, ψ10(x, y) is not an eigenfunction of L̂z and hence cannot be reduced to ψ1(r, ϕ). For
this reason the formal dependence of the excited polaron state on the two localization lengths
δx and δy must be retained for ω0 = 0. At very large B (LB � LF and ωc � ω0), we see, from
equation (24), thatW10 = h̄ωc and does not correspond to the energy of the first excited Landau
level for electrons in the plane. In this regime, the localization scale is defined by LB and one
has δx 
 δy . However, δx �= δy for small B even at very high E∗

⊥ (LF � L0) where the effects
of the potential confinement are negligible and the properties of the symmetric excited polaron
state should be reproduced. For δx 
 2.12LF and δy 
 1.73LF , the symmetric polaron energy
in the excited symmetric state can be written as

W1 
 − (eE∗
⊥)

2

4πσ

[
ln

0.550

kcLF

− 0.837

]
.

It is interesting to know about the structure of the dimple at r = 0 in the limit of
ω0 = 0. To make the problem clearer, we consider the second-order derivative [ξ ′′

rr ]10(0)
at the point r = 0, starting from the wave function given by equation (21) with δx 
 2.12LF

and δy 
 1.73LF . However, for the trial wave function ψ10(x, y), [ξ ′′
rr ]10 depends explicitly

on ϕ after conversion to polar coordinates. This dependence has no physical meaning for the
symmetric polaron state and results fromψ10 being inadequate to describe correctly the excited
state in the limit of ω0 = 0. Since, in the symmetric case, the choice of the coordinate system
is arbitrary, one can consider the angle-averaged value of the second-order derivative. One can
easily show that 〈[ξ ′′

rr ]10(0)〉 and 〈[ξ ′′′
rr ]10(0)〉 are almost zero in the limit of k2

c (δ
2
x + δ2

y) � 1.
Considering higher-order terms, one finds 〈[ξ IV

rr ]10(0)〉 
 3eE∗
⊥ /2πσδ3

xδy which suggests
a minimum at the centre of the isotropic dimple. This estimate agrees with the results of
numerical calculations of reference [12]. We have observed that at large distances the function
ξ1(r) decreases exponentially in the same manner as ξ0(r).

We also can extend our formalism to consider the polaron impurity states treated in
reference [12]. The authors calculated the energy gap between the ground and excited electron
states over a helium film considering a localization potential due to a positive impurity charge
Ze located on the top of the substrate supporting the film with thickness d. It is easy to
show that the impurity potential gives a correction Ze/d2 to E∗

⊥ and an additional parabolic
term m8 2(x2 + y2)/2 with 8 2 = Ze2/md3, which turns the problem into one similar to
that considered in the present work. Making the necessary adjustments to the expressions
for W(0) or ε(0) and taking the same parameters d, kc, and Z as in reference [12], we obtain
ε(10) − ε(0) 
 0.60 meV which should be compared with the value 0.445 meV obtained by
Farias and Peeters in a fully numerical calculation [12].

4. Polaron transport

We now investigate the transport properties of the Q1D polaron. When a driving electric field
E‖ is applied along the plane xy, the surface deformation moves together with the trapped
electron inducing a field of hydrodynamic velocities in the liquid, which is accompanied by
energy dissipation, and leads to a finite value of the polaron mobility [1, 2, 10, 11]. This
approach is valid only in the strong-coupling limit (high E∗

⊥) where the self-trapped state
is energetically favoured, in comparison with the weak-coupling limit where the electron is
simply scattered by ripplons at T < 1 K [22]. In order to evaluate the polaron mobility,
we employ the energy balance equation eE‖v0 = dρE/dt , where v0 is the liquid velocity at
infinity, and ρE is the energy density dissipated. The function dρE/dt is obtained in a straight-
forward way by finding the normal velocity field induced by the polaron from the solution of
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the Navier–Stokes equation. The calculation procedure in the asymmetric case is similar to
that used in references [1, 2] for the symmetric polaron and is based on the same system of
equations and boundary conditions. However, the asymmetry of the surface deformation in the
x- and y-directions should be taken into account and 2D Fourier transforms like equations (7)
should be employed. If the driving field is applied along the x- (y-) direction, the mobility is
given by

µx (y) = e

2ηS

[∑
k

kk2
x (y)|ξk|2

]−1

(28)

where η is the helium viscosity. The summation in equation (28) can be performed analytically
and the polaron mobility in the case of E‖ along the x-direction can be written in terms of the
complete elliptic integrals K(t) and E(t) as

µx = π3/2σ 2

√
2e(E∗

⊥)2η

{
()2

x − )2
y)=()x − )y)

)x

[
E

(√
1 − )2

y/)
2
x

) − ()y/)x)2K(
√

1 − )2
y/)

2
x)

]
+

()2
y − )2

x)=()y − )x)

)y

[
E

(√
1 − )2

x/)
2
y

) − K
(√

1 − )2
x/)

2
y

)]}
. (29)

Here =(t) is the step function. The general equation (29) is considerably simplified in the
following limiting cases:

µx 
 π3/2σ 2)x√
2e(E∗

⊥)2η
if )x � )y (30)

and

µx 
 π3/2σ 2)y√
2e(E∗

⊥)2η ln()y/)x)
if )x � )y. (31)

The polaron mobility along the y-direction, µy , is the same as µx , but the index ‘x’ must
be replaced by ‘y’ in equations (29)–(31) and vice versa. If )x = )y = ), both µx and µy

reproduce the mobility of the symmetric polaron given by [1, 11]

µ =
√

8πσ 2)

e(E∗
⊥)2η

.

As was seen in section 2, the limiting case )x = )y = ) 
 √
2LF can be reached in the limit

of extremely high holding fields E∗
⊥ � 4 kV cm−1 which makes this limit experimentally

inaccessible. For 1 < E∗
⊥ < 3 kV cm−1, we have )x 
 LF � )y 
 L0. Under such

conditions the longitudinal polaron mobility µl (along the x-direction of the channel) is given
by equation (30). The transverse mobility µt (along the y-direction across the channel) is
defined by equation (31). As follows from equations (30) and (31), µl/µt ∼ ln()x/)y) if
)x � )y . See figure 4.

The holding-field dependences of µl and µt are depicted in figure 5. The magnetic field
influences the mobility strongly because it decreases the localization parameters, as can be
seen in figure 5 where polaron mobilities are plotted as functions of E∗

⊥ for some values of
B. Since µ ∼ σ 2 and σ4 
 2σ3, the mobilities for the polaron over 4He are higher than those
with 3He as the substrate.
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Figure 4. Longitudinal (µl ) and transverse (µt ) polaron mobilities over 4He as functions of the
holding electric field calculated by using equation (29) (solid line) and the approximate expressions
(equations (30) and (31)) (dashed line) for zero magnetic field.
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Figure 5. The longitudinal polaron mobility versus the holding electric field for some values of
the magnetic field.

5. Concluding remarks

In this work, we have discussed the possibility of the formation of a polaron in the context
of the anisotropic liquid helium surface. In particular, we have evaluated the energetics and
transport properties of the polaron in a Q1D channel. We have considered the properties of
both ground and excited states of the asymmetric polaron. The localization lengths and the
ground- and excited-state energies have been determined as functions of the holding electric
field within the hydrodynamical model and using a variational approach. We have obtained the
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frequency of spectroscopic transitions between the ground and first levels in the asymmetric
polaron states. The transport properties of the polaron along the corrugated helium surface
have also been studied.

We think that the measurement of the frequency of the spectroscopic transition ω10−0

between the ground and excited states (see figure 4) should be useful in experimental attempts
to observe the polaron state in a Q1D channel over a liquid helium surface. Indeed, our
estimates indicate that ω10−0 differs significantly from the frequency ω0 of spectroscopic
transitions between subbands of the free-electron state in a Q1D channel, which allows one to
separate the experimental signals for these two different types of spectroscopic transition.

Another possibility is measuring the mobility directly as in reference [4]. Our results
indicate that the mobility of the Q1D polaron is 40% smaller than the mobility of the 2D
polaron for the same holding field in the range E∗

⊥ < 3 kV cm−1. Our value of the Q1D
polaron mobility, ∼104 cm2 V−1 s−1 for T = 0.1 K and E∗

⊥ = 3 kV cm−1, is three orders
of magnitude smaller than the mobility of the surface electron over a flat helium surface and
that for a surface electron moving freely along the channel [22], which allow us to distinguish
them easily. Note that we can explore the asymmetry of the polaron mobility along and across
the channel in experimental attempts to observe it.

While the above estimates show that our proposed mechanism for the polaron formation
in Q1D systems on helium should be compatible with accessible experiments, we add other
suggestions for corroborating or refuting our predictions. Of particular interest is the possibility
of using liquid 3He instead 4He as the substrate for the confined Q1D electron system [19].
Recall that for 3He, whose surface tension coefficient is less than half that of 4He, the binding
energy |Eb| can be substantially larger. Also the spectroscopic transition frequencies for
3He are double those for 4He. Furthermore, the description of the polaron in terms of a
hydrodynamic viscous model may be suspect for pure 4He for temperatures below 1 K. In
such a regime, the polaron mobility should be described in a more general treatment which
takes into account the polaron interaction with the ballistic surface and bulk quasiparticles
of superfluid helium. However, we must emphasize that experimental results [4] have been
successfully interpreted by theoretical calculations based on the hydrodynamic approach for
T < 1 K, even though this interpretation has been seriously questioned [5]. Furthermore,
the hydrodynamic approach based on viscous phenomena is very satisfactory in the case of
3He for T down to ∼0.1 K. Another substrate expected to be of interest is a low-T mixture
of 3He and 4He [25]. Recent experiments on Q1D channels have provided a higher effective
holding field for electrons on helium films which could greatly enhance the absolute value of
the binding energy Eb [26].

The electron states have been described in the present work in the one-electron approx-
imation. The validity of the results in the case of finite electron densities is limited by the
condition that the scale of the electron localization must be small in comparison with the
mean interelectronic distance a 
 n−1

l along the channel axis, where nl is the linear electron
density. For B = 0 and E⊥ < 3 kV cm−1 where )x 
 LF � )y 
 L0, the characteristic
values of )x are ∼10−5 cm under the condition nl � 105 cm−1. At higher electron densities,
correlation effects could strongly influence the polaron properties, and the applicability of
our theory developed for the low-density limit becomes doubtful. For low electron densities,
experimental difficulties may be encountered in making the measurements of the experimental
signal of the response of the electron system at a low level. This signal is proportional to the
electron density, which is especially restricted if we have a single Q1D channel. One possibility
is that of using Nch weakly coupled multi-channels [14,16], like in multiple quantum wells in
semiconductor heterostructures. If the average distance between the channels b � a, one can
disregard the correlation between electrons in different channels, and the total response should
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be enhanced by the factor Nch. This makes the conditions more appropriate for experimental
investigation of Q1D electron systems over liquid helium in the low-density limit.

We hope that the asymmetric polaron can be detected at low temperatures, probably at
T < 0.1 K. Modern experimental methods for achieving low and ultralow temperatures would
then offer the possibility of observing the polaron in the Q1D channel on the liquid helium
surface.
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